Thursday, 15 September 2011

Post Ligament-Transplant-Surgery-Therapy Can Be Improved with the ArmTutor


Carolyn Y. Johnson writing in the Boston Globe September 15, 2011 reports about David Leone who left behind his familiar wheelchair, shifting himself onto a chair where a robotic external skeleton fitted to his 5-foot-11-inch frame sat waiting. Half a dozen people scurried around him, cinching Velcro straps tight around his legs and torso. He grabbed the handles of a walker, leaned forward, and hoisted himself to his feet.
Seven years after he last walked, Leone – paralyzed from the waist down – lifted his right foot and took a step, with the robotic technology moving his limbs.The 37-year-old from Millis kept on going, racking up 284 steps in a 42-minute session this week at Spaulding Rehabilitation Hospital in Boston.
Leone, paralyzed since he fell backward off a ladder in 2004, is among the first people with spinal cord injuries to try out eLEGS. The robotic technology, developed by a California company called Berkeley Bionics, is undergoing investigational studies at Spaulding and nine other rehabilitation centers.
The device is completely external, initially with steps triggered by pushing a button on a remote control. That spurs the device’s computer to coordinate the complicated choreography of a step, utilizing motors and sensors at the knees and hips. The machine does all the work, but it’s up to the patient to learn again how to walk, how to lean forward into the opposite foot, how to move with confidence when there is no feedback from the lower half of your body.
Researchers looking for ways to help people with spinal cord injuries are moving forward on multiple fronts, ranging from biological approaches aimed at regenerating injured tissue, to protective approaches that minimize the damage in the immediate aftermath of an injury, to engineering approaches that use robotics or implanted technology to restore mobility. The research, however, is still at an early stage in many of these areas.
If biological therapies are successful in restoring injured tissue, for example, patients would need rehabilitation devices that help retrain them how to use their muscles and bodies. However when there is at least partial movement ability the LegTutor comes in being very helpful.
The LegTutor™ system has been developed to allow for functional rehabilitation of the lower extremity. The system consists of an ergonomic wearable leg brace and dedicated rehabilitation software. The LegTutor™ system allows for a range of biomechanical evaluation including speed, passive and active range of motion and motion analysis of the lower extremity. Quantitative biomechanical data allow for objective evaluation and rehabilitation treatment follow up. The LegTutor™, together with its sister devices (the HandTutor, ArmTutor and 3DTutor), rehabilitation concept is based on performing controlled exercise rehabilitation practice at a patient customized level with real time accurate feedback on the patient’s performance. The exercises are designed in the form of challenging games that are suitable for a wide variety of neurological and orthopedic injury and disease.
The games challenge the patient to perform the exercise task to their best ability and to continue exercise practice.
The LegTutor™ allows for isolated and a combination of knee and three directional hip treatment. The system provides detailed exercise performance instructions and precise feedback on the patients exercise performance. Controlled exercise of multi joints within the normal movement pattern prevents the development of undesired and compensatory joint movement and ensures better performance of functional tasks.
The LegTutor™ system is used by many leading rehabilitation centers worldwide and has full FDA and CE certification.

No comments:

Post a Comment